Module heyvi.model.ResNets_3D_PyTorch.resnet
Expand source code Browse git
import math
from functools import partial
import torch
import torch.nn as nn
import torch.nn.functional as F
def get_inplanes():
return [64, 128, 256, 512]
def conv3x3x3(in_planes, out_planes, stride=1):
return nn.Conv3d(in_planes,
out_planes,
kernel_size=3,
stride=stride,
padding=1,
bias=False)
def conv1x1x1(in_planes, out_planes, stride=1):
return nn.Conv3d(in_planes,
out_planes,
kernel_size=1,
stride=stride,
bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, in_planes, planes, stride=1, downsample=None):
super().__init__()
self.conv1 = conv3x3x3(in_planes, planes, stride)
self.bn1 = nn.BatchNorm3d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3x3(planes, planes)
self.bn2 = nn.BatchNorm3d(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, in_planes, planes, stride=1, downsample=None):
super().__init__()
self.conv1 = conv1x1x1(in_planes, planes)
self.bn1 = nn.BatchNorm3d(planes)
self.conv2 = conv3x3x3(planes, planes, stride)
self.bn2 = nn.BatchNorm3d(planes)
self.conv3 = conv1x1x1(planes, planes * self.expansion)
self.bn3 = nn.BatchNorm3d(planes * self.expansion)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self,
block,
layers,
block_inplanes,
n_input_channels=3,
conv1_t_size=7,
conv1_t_stride=1,
no_max_pool=False,
shortcut_type='B',
widen_factor=1.0,
unitnorm=False,
n_classes=400):
super().__init__()
block_inplanes = [int(x * widen_factor) for x in block_inplanes]
self.in_planes = block_inplanes[0]
self.no_max_pool = no_max_pool
self._unitnorm = unitnorm # embedding layer
self.conv1 = nn.Conv3d(n_input_channels,
self.in_planes,
kernel_size=(conv1_t_size, 7, 7),
stride=(conv1_t_stride, 2, 2),
padding=(conv1_t_size // 2, 3, 3),
bias=False)
self.bn1 = nn.BatchNorm3d(self.in_planes)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool3d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, block_inplanes[0], layers[0],
shortcut_type)
self.layer2 = self._make_layer(block,
block_inplanes[1],
layers[1],
shortcut_type,
stride=2)
self.layer3 = self._make_layer(block,
block_inplanes[2],
layers[2],
shortcut_type,
stride=2)
self.layer4 = self._make_layer(block,
block_inplanes[3],
layers[3],
shortcut_type,
stride=2)
self.avgpool = nn.AdaptiveAvgPool3d((1, 1, 1))
self.fc = nn.Linear(block_inplanes[3] * block.expansion, n_classes)
for m in self.modules():
if isinstance(m, nn.Conv3d):
nn.init.kaiming_normal_(m.weight,
mode='fan_out',
nonlinearity='relu')
elif isinstance(m, nn.BatchNorm3d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def _downsample_basic_block(self, x, planes, stride):
out = F.avg_pool3d(x, kernel_size=1, stride=stride)
zero_pads = torch.zeros(out.size(0), planes - out.size(1), out.size(2),
out.size(3), out.size(4))
if isinstance(out.data, torch.cuda.FloatTensor):
zero_pads = zero_pads.cuda()
out = torch.cat([out.data, zero_pads], dim=1)
return out
def _make_layer(self, block, planes, blocks, shortcut_type, stride=1):
downsample = None
if stride != 1 or self.in_planes != planes * block.expansion:
if shortcut_type == 'A':
downsample = partial(self._downsample_basic_block,
planes=planes * block.expansion,
stride=stride)
else:
downsample = nn.Sequential(
conv1x1x1(self.in_planes, planes * block.expansion, stride),
nn.BatchNorm3d(planes * block.expansion))
layers = []
layers.append(
block(in_planes=self.in_planes,
planes=planes,
stride=stride,
downsample=downsample))
self.in_planes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.in_planes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
if not self.no_max_pool:
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
if self._unitnorm:
x = F.normalize(x, p=2)
x = self.fc(x)
return x
def generate_model(model_depth, **kwargs):
assert model_depth in [10, 18, 34, 50, 101, 152, 200]
if model_depth == 10:
model = ResNet(BasicBlock, [1, 1, 1, 1], get_inplanes(), **kwargs)
elif model_depth == 18:
model = ResNet(BasicBlock, [2, 2, 2, 2], get_inplanes(), **kwargs)
elif model_depth == 34:
model = ResNet(BasicBlock, [3, 4, 6, 3], get_inplanes(), **kwargs)
elif model_depth == 50:
model = ResNet(Bottleneck, [3, 4, 6, 3], get_inplanes(), **kwargs)
elif model_depth == 101:
model = ResNet(Bottleneck, [3, 4, 23, 3], get_inplanes(), **kwargs)
elif model_depth == 152:
model = ResNet(Bottleneck, [3, 8, 36, 3], get_inplanes(), **kwargs)
elif model_depth == 200:
model = ResNet(Bottleneck, [3, 24, 36, 3], get_inplanes(), **kwargs)
return model
Functions
def conv1x1x1(in_planes, out_planes, stride=1)
-
Expand source code Browse git
def conv1x1x1(in_planes, out_planes, stride=1): return nn.Conv3d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
def conv3x3x3(in_planes, out_planes, stride=1)
-
Expand source code Browse git
def conv3x3x3(in_planes, out_planes, stride=1): return nn.Conv3d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
def generate_model(model_depth, **kwargs)
-
Expand source code Browse git
def generate_model(model_depth, **kwargs): assert model_depth in [10, 18, 34, 50, 101, 152, 200] if model_depth == 10: model = ResNet(BasicBlock, [1, 1, 1, 1], get_inplanes(), **kwargs) elif model_depth == 18: model = ResNet(BasicBlock, [2, 2, 2, 2], get_inplanes(), **kwargs) elif model_depth == 34: model = ResNet(BasicBlock, [3, 4, 6, 3], get_inplanes(), **kwargs) elif model_depth == 50: model = ResNet(Bottleneck, [3, 4, 6, 3], get_inplanes(), **kwargs) elif model_depth == 101: model = ResNet(Bottleneck, [3, 4, 23, 3], get_inplanes(), **kwargs) elif model_depth == 152: model = ResNet(Bottleneck, [3, 8, 36, 3], get_inplanes(), **kwargs) elif model_depth == 200: model = ResNet(Bottleneck, [3, 24, 36, 3], get_inplanes(), **kwargs) return model
def get_inplanes()
-
Expand source code Browse git
def get_inplanes(): return [64, 128, 256, 512]
Classes
class BasicBlock (in_planes, planes, stride=1, downsample=None)
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code Browse git
class BasicBlock(nn.Module): expansion = 1 def __init__(self, in_planes, planes, stride=1, downsample=None): super().__init__() self.conv1 = conv3x3x3(in_planes, planes, stride) self.bn1 = nn.BatchNorm3d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3x3(planes, planes) self.bn2 = nn.BatchNorm3d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out
Ancestors
- torch.nn.modules.module.Module
Class variables
var dump_patches : bool
var expansion
var training : bool
Methods
def forward(self, x) ‑> Callable[..., Any]
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source code Browse git
def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out
class Bottleneck (in_planes, planes, stride=1, downsample=None)
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code Browse git
class Bottleneck(nn.Module): expansion = 4 def __init__(self, in_planes, planes, stride=1, downsample=None): super().__init__() self.conv1 = conv1x1x1(in_planes, planes) self.bn1 = nn.BatchNorm3d(planes) self.conv2 = conv3x3x3(planes, planes, stride) self.bn2 = nn.BatchNorm3d(planes) self.conv3 = conv1x1x1(planes, planes * self.expansion) self.bn3 = nn.BatchNorm3d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out
Ancestors
- torch.nn.modules.module.Module
Class variables
var dump_patches : bool
var expansion
var training : bool
Methods
def forward(self, x) ‑> Callable[..., Any]
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source code Browse git
def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) out = self.relu(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out
class ResNet (block, layers, block_inplanes, n_input_channels=3, conv1_t_size=7, conv1_t_stride=1, no_max_pool=False, shortcut_type='B', widen_factor=1.0, unitnorm=False, n_classes=400)
-
Base class for all neural network modules.
Your models should also subclass this class.
Modules can also contain other Modules, allowing to nest them in a tree structure. You can assign the submodules as regular attributes::
import torch.nn as nn import torch.nn.functional as F class Model(nn.Module): def __init__(self): super(Model, self).__init__() self.conv1 = nn.Conv2d(1, 20, 5) self.conv2 = nn.Conv2d(20, 20, 5) def forward(self, x): x = F.relu(self.conv1(x)) return F.relu(self.conv2(x))
Submodules assigned in this way will be registered, and will have their parameters converted too when you call :meth:
to
, etc.:ivar training: Boolean represents whether this module is in training or evaluation mode. :vartype training: bool
Initializes internal Module state, shared by both nn.Module and ScriptModule.
Expand source code Browse git
class ResNet(nn.Module): def __init__(self, block, layers, block_inplanes, n_input_channels=3, conv1_t_size=7, conv1_t_stride=1, no_max_pool=False, shortcut_type='B', widen_factor=1.0, unitnorm=False, n_classes=400): super().__init__() block_inplanes = [int(x * widen_factor) for x in block_inplanes] self.in_planes = block_inplanes[0] self.no_max_pool = no_max_pool self._unitnorm = unitnorm # embedding layer self.conv1 = nn.Conv3d(n_input_channels, self.in_planes, kernel_size=(conv1_t_size, 7, 7), stride=(conv1_t_stride, 2, 2), padding=(conv1_t_size // 2, 3, 3), bias=False) self.bn1 = nn.BatchNorm3d(self.in_planes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool3d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, block_inplanes[0], layers[0], shortcut_type) self.layer2 = self._make_layer(block, block_inplanes[1], layers[1], shortcut_type, stride=2) self.layer3 = self._make_layer(block, block_inplanes[2], layers[2], shortcut_type, stride=2) self.layer4 = self._make_layer(block, block_inplanes[3], layers[3], shortcut_type, stride=2) self.avgpool = nn.AdaptiveAvgPool3d((1, 1, 1)) self.fc = nn.Linear(block_inplanes[3] * block.expansion, n_classes) for m in self.modules(): if isinstance(m, nn.Conv3d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm3d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) def _downsample_basic_block(self, x, planes, stride): out = F.avg_pool3d(x, kernel_size=1, stride=stride) zero_pads = torch.zeros(out.size(0), planes - out.size(1), out.size(2), out.size(3), out.size(4)) if isinstance(out.data, torch.cuda.FloatTensor): zero_pads = zero_pads.cuda() out = torch.cat([out.data, zero_pads], dim=1) return out def _make_layer(self, block, planes, blocks, shortcut_type, stride=1): downsample = None if stride != 1 or self.in_planes != planes * block.expansion: if shortcut_type == 'A': downsample = partial(self._downsample_basic_block, planes=planes * block.expansion, stride=stride) else: downsample = nn.Sequential( conv1x1x1(self.in_planes, planes * block.expansion, stride), nn.BatchNorm3d(planes * block.expansion)) layers = [] layers.append( block(in_planes=self.in_planes, planes=planes, stride=stride, downsample=downsample)) self.in_planes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.in_planes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) if not self.no_max_pool: x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) if self._unitnorm: x = F.normalize(x, p=2) x = self.fc(x) return x
Ancestors
- torch.nn.modules.module.Module
Class variables
var dump_patches : bool
var training : bool
Methods
def forward(self, x) ‑> Callable[..., Any]
-
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the :class:
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.Expand source code Browse git
def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) if not self.no_max_pool: x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) if self._unitnorm: x = F.normalize(x, p=2) x = self.fc(x) return x